توماس ادیسون
توماس ادیسون

توماس آلوا ادیسون (به انگلیسی: Thomas Edison) (زاده ۱۱ فوریه ۱۸۴۷ - مرگ ۱۸ اکتبر ۱۹۳۱) مخترع و بازرگان آمریکایی بود. وی وسایل متعددی را طراحی یا کامل کرد که مهم‌ترین و معروفترین آنها لامپ رشته‌ای است.

هنگامی که ادیسون در دوره ابتدایی درس می خواند مدیر مدرسه وی اعتقاد داشت که ادیسون شاگرد کودنی است و عذر وی را از مدرسه خواست.





ادیسون در طول حیات علمی خویش توانست ۲۵۰۰ امتیاز اختراع را در ایالات متحدهٔ آمریکا، بریتانیا، فرانسه و آلمان به نام خود ثبت کند که رقمی حیرت‌انگیز و باورنکردنی به نظر می‌رسد. واقعیت این است که بیشتر اختراعات وی تکمیل شدهٔ کارهای دانشمندان پیشین بودند و ادیسون کارمندان و متخصصان پرشماری در کنار خود داشت که در پیشبرد تحقیقات و به سرانجام رسانیدن نوآوری‌هایش یاریش می‌کردند. دهنی ذغالی تلفن، ماشین چاپ، میکروفن، گرامافون، دیکتافون، کینتوسکوپ (نوعی دستگاه نمایش فیلم)، دینام موتور و لاستیک مصنوعی از جمله مواد و وسایلی هستند که بدست ادیسون و همکارانش ابداع یا بهینه شدند.

ادیسون از اولین مخترعانی بود که توانست با موفقیت، بسیاری از اختراعات خود را به تولید انبوه برساند.




سال‌های میانه
نخستین پله‌های ترقی
در سال ۱۸۶۹ م. ادیسون که ادارهٔ راه‌آهن را ترک کرده بود، به‌عنوان سرپرست فنی به استخدام یک مؤسسهٔ صرافی بزرگ در نیویورک در آمد. در این مقام او توانست نخستین اختراع موفقش را که نوعی تلگراف چاپی بود، به نام خود ثبت کند. تلگراف ادیسون برخلاف انواع رایج که علائم مورس را به صورت صداهای کوتاه و کشیده به گوش اپراتور می‌رسانیدند، آنها را به شکل خط و نقطه بر روی نوار کاغذی چاپ می‌کرد. او حق امتیاز اختراعش را در مقابل چهل هزار دلار به مدیر صرافخانه واگذار کرد و با پول آن در شهر نیوآرک ایالت نیوجرسی یک کارگاه تحقیقاتی برای خود برپا نمود. در محل جدید او علاوه بر تکمیل لوازم جانبی تلگراف، یک سامانهٔ پیشرفتهٔ نمایشگر اطلاعات بورس را طراحی کرد که سود هنگفتی از آن حاصل آمد.



منلو پارک

ادیسون مدتها این فکر را در سرداشت که کارگاهش را به محل بازتر و بزرگ‌تری منتقل کند. با فراهم شدن سرمایهٔ کافی، سرانجام در سال ۱۸۷۶ م. در منطقهٔ «منلوپارک» نیوجرسی یک لابراتوار پژوهشی مجهز بنیاد نهاد و گروهی از افراد لایق و مستعد را به همکاری فراخواند.

تأسیس این آزمایشگاه نقطهٔ عطفی در رشته فعالیت‌های ادیسون و از بزرگ‌ترین ابتکارهای او به شمار می‌رود. آزمایشگاه منلو پارک نخستین مؤسسه‌ای بود که منحصراً با هدف تولید و تکمیل ابداعات علمی برپا شد و آن را باید نمونهٔ اولیهٔ آزمایشگاه‌های تحقیقاتی بزرگی دانست که از آن پس تمام صنایع مهم در کنار کارگاه‌های خود ایجاد کردند. در سایهٔ نظارت و سازماندهی توماس ادیسون و کار گروهی کارمندان وی صدها اختراع کوچک و بزرگ در این مؤسسه به ثمر رسیدند که البته همگی به نام ادیسون تمام شدند.



گرامافون

از قدیم‌الایام، داشتن وسیله‌ای که بتوان با آن صدا را ضبط کرد از آرزوهای بشر بوده‌است. قبل از آنکه توجه ادیسون به این مقوله جلب شود، لئون اسکوت مارتین‌ویل فرانسوی (۱۸۵۷ م.) و دیگران تحقیقاتی کرده و گام‌هایی در این راه برداشته بودند؛ اما دستگاه‌های آنها عملاً ً قابل استفاده نبود زیرا تنها با یک دور گوش دادن، صدای ضبط شده از بین می‌رفت.

در سال ۱۸۷۷ م. ادیسون موفق به ساخت وسیله‌ای شد که واقعاً کار می‌کرد؛ یعنی می‌توانست صدا را ضبط و دو تا سه بار پخش کند. «ضبط صوت» ادیسون که فونوگراف (آوانگار) نام گرفته بود، ساختمانی ساده داشت: استوانه‌ای فلزی بود با یک دستهٔ گرداننده که در یک انتهای آن سوزنی همراه با یک بوق تعبیه شده بود. وقتی کسی استوانه را می‌چرخاند و درون بوق صحبت می‌کرد، بر اثر ارتعاش سوزن، روی ورقهٔ نازک حلبی ِدور استوانه خراش‌هایی می‌افتاد. برای شنیدن صدای ضبط شده نیز کافی بود سوزن را به ابتدای مسیر برگردانده و دوباره استوانه را به‌چرخش در آورند. کیفیت صدا البته بسیار پایین بود و صفحه حلبی هم پس از چند بار استفاده خراب می‌شد. با اینحال همین وسیله ابتدایی در نظر مردم بسیار شگفت‌انگیز می‌نمود و بشدت مورد استقبال قرار گرفت. روزنامه‌ها ادیسون را «جادوگر منلوپارک» لقب دادند. حتی دولت رسماً وی را به واشینگتن دعوت کرد تا اختراعش را در برابر مقامات به نمایش بگذارد. ده سال بعد (۱۸۸۷ م.) ادیسون (یا به روایتی الکساندر گراهام بل)، استوانهٔ مومی را جایگزین ورق حلبی کرد و بالاخره امیل برلینر مخترع آمریکایی آلمانی‌تبار با تبدیل استوانهٔ مومی به صفحهٔ پلاستیکی، گرامافون را به شکل امروزی درآورد.




صدای ضبط شده توماس ادیسون
انیمیشن صدای ادیسون ضبط شده با گرامافونش در مرداد ماه 1306 خورشیدی با خواندن داستان ( مری یک بره کوچک داشت )




لامپ الکتریکی

توماس ادیسون لامپ حبابی را ابداع نکرد و قبل از وی نوعی لامپ اختراع شده بود او در سال ۱۸۸۰ یک طرح قابل تحقق و تولید برای لامپ حبابی مطرح کرد (با استفاده از یک رشته از جنس بامبوی کربنیزه) که مورد استفاده منازل و خانه‌ها شد و البته یک سال بعد جوزف سوان در سال ۱۸۸۱ یک ساختار کارآمدتر را (با استفاده از رشتهٔ سلولوزی) مطرح نمود.

سابقهٔ سیستم روشنایی الکتریکی به اواسط قرن نوزدهم می‌رسد. در سال ۱۸۵۴ م. هاینریش گوبل نخستین لامپ برق را اختراع کرد که حدود چهارصد ساعت نور می‌داد اما آن را به نام خود به ثبت نرساند. پس از وی جیمز وودوارد، ویلیام سایر، متیو ایوانز (۱۸۷۵ م.) و جوزف سووان (۱۸۷۸ م.) مدل‌های دیگر چراغ‌های الکتریکی را ارائه کردند.

کمی پیش از آنکه ادیسون نیز وارد این عرصهٔ جدید شود، والیس صنعتگر آمریکایی نوعی چراغ برق را روانهٔ بازارکرده بود که نمونه‌ای از آن به دست ادیسون رسید (۱۸۷۸ م.). دستگاه والیس تشکیل می‌شد از چارچوبی با یک حباب و دو میلهٔ فلزی متحرک که به هر کدام تکه ذغالی متصل بود. عبور جریان برق از میله‌ها باعث می‌شد که دو قطعه ذغال بسوزند و میانشان قوس الکتریکی بسیار درخشانی به رنگ آبی پدیدار شود.

این چراغ الکتریکی ابتدایی بازده پایینی داشت زیرا مصرف برق آن زیاد و عمر ذغال‌هایش کم بود. با این وجود، ادیسون که به اهمیت اختراع والیس پی‌برده بود، تصمیم گرفت آن را اصلاح کند و به جای ذغال مادهٔ مناسب تری بیابد که با برق کمتر مدت درازی روشنایی بدهد و به مرور زمان نسوزد و از بین نرود.

پس از یک سال تلاش بی‌وقفه و آزمایش صدها مادهٔ گوناگون، سرانجام ادیسون و همکارانش توانستند با خالی کردن هوای داخل حباب و استفاده از نخ معمولی کربونیزه (ذغالی‌شده) لامپی بسازند که تا چهل ساعت نور بدهد. این موفقیت اولیه موجب شد تا آنها با پشتکار بیشتری به تحقیقات خود ادامه دهند و زمانیکه موفق شدند عمر متوسط چراغ برق را به پانصد ساعت برسانند، ادیسون تشخیص داد که زمان مناسب برای نمایش آن فرا رسیده‌است.

البته نمونه لامپ ادیسون قبل از ارائه توسط شخص دیگری تولید و در اداره ثبت بریتانیا به اسم دانشمندی به نام سوان ثبت شده بود و این ثابت می کند لامپ ادیسون چیز جدیدی نبود ولی با این حال نباید تلاش های ادیسون را در راستای ترویج این تکنولوژی نادیده گرفت

او از روزنامه‌نگاران و صاحبان سرمایه دعوت کرد تا در شب ۳۱ دسامبر ۱۸۷۹ م. برای دیدن اختراع جدیدش به منلوپارک بیایند. به دستور او آزمایشگاه و اطراف آن را با صدها لامپ برق آراستند بطوریکه محوطهٔ منلوپارک و جادهٔ منتهی به آن غرق در نور شده بود. ادیسون میهمانان خود را با چیزی روبرو کرده بود که برایشان سابقه نداشت. منظرهٔ لامپ‌های نورانی بازدیدکنندگان را به شدت تحت تأثیر قرار داد؛ بطوریکه وقتی ادیسون نقشهٔ خود را برای تأسیس یک کارخانهٔ بزرگ الکتریسیته در نیویورک مطرح کرد پیشنهادش با استقبال گرم سرمایه‌داران حاضر روبرو شد.




عصر الکتریسیته

در ۲۷ ژانویه ۱۸۸۰ ادیسون تقاضانامهٔ دریافت امتیاز اختراع «لامپ روشنایی الکتریکی» را به ادارهٔ اختراعات آمریکا تسلیم کرد اما با درخواستش موافقت نشد. کارشناسان سازمان معتقد بودند که طراحی و ساخت لامپ ادیسون بر مبنای مطالعات ویلیام سایر انجام شده است؛ بنابراین تنها امتیاز اختراع رشتهٔ ذغالی شده پرمقاومت (مادهٔ تولیدکنندهٔ نور لامپ) به ادیسون تعلق گرفت.

در ۱۳ فوریه ۱۸۸۰ م. وی به کشف یک پدیدهٔ مهم فیزیکی نائل آمد که اکنون به اثر ادیسون معروف است.

دو سال پس از نمایش عمومی لامپ الکتریکی، (۱۸۸۲ م.) ساختمان کارخانهٔ مرکزی تولید برق موسوم به «ایستگاه پرل استر یت» به پایان رسید و در چهارم سپتامبر همان سال نخستین سیستم توزیع نیروی الکتریسیته در جهان با قدرت ۱۱۰ ولت و ۵۹ مشتری در پایین محلهٔ منهتن به دست ادیسون افتتاح گردید.

چندی بعد ادیسون کوشید تا حق امتیاز لامپ برق را در بریتانیا از آن خود کند و بر رقیبش جوزف سووان – که مستقل از ادیسون موفق به اختراع لامپ حرارتی ِرشته کربنی شده بود- پیروز شود اما پس از یک دعوای حقوقی بی‌حاصل، دو طرف با یکدیگر به توافق رسیدند و برای بهره‌مند شدن از منافع اختراعشان در بریتانیا شرکت «ادیسووان» را تأسیس کردند. این شرکت در سال ۱۸۹۲ م. جزئی از کمپانی بزرگ جنرال الکتریک (متعلق به ادیسون) گردید.




شیوهٔ ادیسون

همانطور که گفته شد، بیشتر اختراعات ادیسون حاصل تکمیل ایده‌های دیگران و کار دسته‌جمعی گروه بزرگی از تکنسین‌ها و کارمندانی بود که تحت نظارت او به تحقیق و آزمایش می‌پرداختند. لویس لاتیمر دستیار آفریقایی-آمریکایی ادیسون که در پروژهٔ چراغ الکتریکی نقش مهمی داشت، از جملهٔ این افراد است. اگر امروز کمتر نامی از کسانی مانند او به میان می‌آید، به این دلیل است که ادیسون غالباً همکاران خود را در افتخار و اعتبار اختراعاتش سهیم نمی‌کرد. با این همه شکی نیست که بدون قدرت سازماندهی و خصوصاً همت بلند ادیسون دست یافتن به این همه موفقیت ممکن نبود. نیکلا تسلا فیزیکدان بزرگ و یکی از همکاران ادیسون دربارهٔ روش او برای حل مسائل می‌نویسد: «اگر ادیسون می‌خواست سوزنی را در انبار کاهی پیدا کند، با پشتکارفراوان دانه به دانه رشته‌های کاه را کنار می‌زد تا بالاخره سوزن نمایان شود. بارها با تأسف شاهد بودم که چگونه بخش اعظم وقت و انرژی او صرف یافتن یک فرمول جزئی یا انجام دادن محاسبه‌ای کوچک می‌شد. » ادیسون خود نیز در این‌باره گفته‌است: «نوآوری عبارت است از یک درصد الهام روح و نود و نه درصد عرق ریختن و تلاش کردن. »

تسلا دانشمندی شایسته و بهترین کارمند ادیسون بود. او ابتدا از طرف ادیسون مأمور شده بود تا راه‌های توسعهٔ سیستم‌های جریان مستقیم (DC) را بررسی کند اما چون پس از پایان کار ادیسون تعهدات مالی خود را زیر پا گذاشت تسلا تصمیم به ترک شرکت او گرفت. با پذیرش استعفای تسلا، ادیسون مرتکب اشتباه بزرگی شد چرا که چندی بعد تسلا با کشف جریان متناوب (AC) در برابر امپراتوری ادیسون و سیستم DC او قد علم کرد. او با حمایت جرج وستینگهاوس کارخانه‌دار معروف سامانه‌های چندفازی توزیع برق را برپایهٔ جریان AC تکامل بخشید که بسیار کارآمدتر از سیستم ادیسون بود. با وجود تبلیغات منفی جنرال الکتریک، جریان AC روز به روز رواج بیشتری یافت و سرانجام سلطه ادیسون را بر بازار صنایع الکتریکی درهم شکست.




سینما

در سال ۱۸۸۹م. یکی از کارمندان شرکت ادیسون به اسم ویلیام کندی لوری دیکسون نوعی دستگاه نمایش فیلم اختراع کرد که پنج سال بعد(۱۸۹۴م.) با نام تجاری کینه‌توسکوپ (متحرک نما) در نیویورک به معرض نمایش گذاشته شد. کینه‌توسکوپ دستگاهی بود که هرکس از سوراخ آن به درون می‌نگریست و دسته‌ای را می‌چرخاند، تصاویر متحرکی را مشاهده می‌کرد. این وسیله ابتدا به‌عنوان مکمل گرامافون و برای رونق بخشیدن به بازار آن طراحی شده بود وهدف آن بود که با افزودن امکان تماشای عکس متحرک، بر جذابیت گرامافون نزد خریداران افزوده شود.

با وجود اهمیت این اختراع، ادیسون یا دیکسون را نمی‌توان پایه‌گذار سینما دانست؛ کینه‌توسکوپ آن ها بیشتر به ماشین «شهر فرنگ» شبیه بود و دریک زمان بیش از یک نفر نمی‌توانست از آن استفاده کند. چنین دستگاهی در عصر جدید که تودهٔ مردم به هیجان و سرگرمی‌های دسته‌جمعی نیاز داشتند چندان به کار نمی‌آمد. ایدهٔ بزرگ کردن تصاویر و بکارگیری پردهٔ نمایش هرگز به ذهن ادیسون نرسید چون همان طور که گفتیم از اختراع کینه‌توسکوپ مقصود دیگری داشت ولی حدود یک سال بعد لویی لومیر صنعتگر ثروتمند فرانسوی با ساختن دوربین فیلم‌برداری و پروژکتور و افتتاح اولین سالن سینما در گراند کافه پاریس (۲۸ دسامبر ۱۸۹۵م.) نخستین گام‌ها را برای علاقه‌مند کردن مردم به این پدیدهٔ نو برداشت. پس از گذشت چند سال، سالن‌های نمایش فیلم در اروپا و آمریکا آن قدر فراوان شده بود که ادیسون نیز چاره‌ای جز پیوستن به این جریان و کنار گذاشتن سینمای تک نفره‌اش ندید.

ادیسون در تبدیل سینما به رسانه‌ای همگانی و صنعتی سودآور نقش مؤثری ایفا کرده‌است. فیلم استاندارد ۳۵ میلیمتری با چهار روزنه در لبهٔ هر فریم که هنوز مورد استفاده قرار می‌گیرد از یادگارهای ادیسون است. وی همچنین مؤسس اولین استودیوی فیلمسازی دنیا (بلک ماریا در ایالت نیوجرسی) است. نخستین فیلم کپی رایت شدهٔ تاریخ سینما با عنوان «عطسهٔ فرد اُت» در این استودیو ساخته شد.





سال‌های پایانی

در اول فوریه ۱۸۹۳م. ادیسون ساختمان «بلک ماریا» نخستین استودیوی تصاویر متحرک را در وست اورنج ِ نیوجرسی به پایان برد. او کوشید تا اختراع دوربین فیلم برداری را تماماً به خود نسبت دهد و حق استفادهٔ انحصاری از آن را به دست آورد اما در ۱۰ مارس ۱۹۰۲م. ادعای او در یک دادگاه استیناف ایالات متحده رد شد.

در ۱۸۹۴م. او در زمینهٔ ترکیب فیلم و صدا تحقیقاتی انجام داد که سرانجام به اختراع کینه‌توفون انجامید. این دستگاه که ترکیب ناجوری از کینه‌توسکوپ و گرامافون استوانه‌ای بود با استقبال مردم مواجه نشد.

در ۶ ژانویه ۱۹۳۱م. ادیسون درخواست‌نامهٔ ثبت آخرین اختراع خود «وسیله نگهدارندهٔ اشیاء هنگام آبکاری» را به ادارهٔ اختراعات فرستاد اما پیش از دریافت پاسخ اجل به او مهلت نداد و این مخترع بزرگ در اواخر همان سال در سن ۸۴ سالگی چشم از جهان فرو بست.




بار الکتریکی
بار الکتریکی یک خاصیت فیزیکی ماده است که باعث می‌شود، هنگامی که ماده در مجاورت مادهٔ باردار دیگری قرار می‌گیرد به آن نیرو وارد شود. بار الکتریکی دو نوع است بار مثبت و بار منفی. بین دو ماده یا جسم با بارهای هم‌نام نیروی رانش ایجاد می‌شود و برعکس اگر ناهم‌نام باشند بین آن‌ها ربایش ایجاد می‌شود. در سامانهٔ استاندارد بین‌المللی یکاها واحد بار الکتریکی کولن (C) است. البته در مهندسی برق از یکای آمپرمتر (Ah) نیز استفاده می‌کنند. در مطالعهٔ اندرکنش میان اجسام باردار، دانش الکترومغناطیس کلاسیک کافی است و از اثرهای کوانتومی صرف نظر می‌شود.

بار الکتریکی یک خاصیت پایسته در ماده است به این معنی که بار الکتریکی تولید نمی‌شود یا از بین نمی‌رود؛ بار الکتریکی از ذرات زیراتمی ماده که تعیین‌کنندهٔ خواص الکترومغناطیس ماده‌اند ناشی می‌شود. یک مادهٔ باردار الکتریکی، تولیدکنندهٔ میدان‌های الکترومغناطیسی است و خود از آنها تاثیر می‌گیرد. اندرکنش میان یک بار متحرک و یک میدان الکترومغناطیسی عامل ایجاد نیروهای الکترومغناطیسی است. این نیرو خود یکی از چهار نیروی بنیادی است.

آزمایش‌ها در قرن بیستم، توضیحی کوانتومی از بار الکتریکی ارائه کرده‌اند (این عمل را کوانتومی کردن می نامند)، به عبارت دیگر دانشمندان دریافته‌اند که بار الکتریکی خود از واحد کوچک‌تری با نام بار بنیادی تشکیل شده‌است. بار یک الکترون تقریباً برابر با e=1.602\times10^{-19} C می‌باشد. (البته ذراتی با نام کوارک وجود دارند که باری به اندازه چند e⅓ دارند.) پروتون باری به اندازهٔ e و الکترون باری برابر با e- دارد. علم مطالعه ذرات باردار و توضیح ارتباط آنها با فوتونها، الکترودینامیک کوانتومی نام دارد.




مقدمه
بار یک ویژگی بنیادی در انواع ماده است که به صورت ربایش یا رانش الکتروستاتیکی در حضور ماده‌ای دیگر نمود پیدا می‌کند. بار الکتریکی ویژگیی است که سرچشمهٔ آن به بسیاری از ذرات زیراتمی ماده برمی‌گردد. بارِ ذراتی که به صورت آزاد یافت می‌شوند به اندازهٔ ضریب صحیحی از بار بنیادی (بار یک الکترون) است، در این حالت می‌گوییم بار الکتریکی یک کمیت گسسته است. مایکل فاراده در آزمایش‌های برق‌کافت خود دریافت که بار الکتریکی کمیتی گسسته است. رابرت میلیکان نیز در آزمایش‌های خود به این حقیقت می‌رسد و مقدار بار یک الکترون را نیز اندازه می‌گیرد.

بنابراین به صورت کمیت‌های گسسته می‌گوییم که بار یک الکترون ۱- و بار یک پروتون ۱+ است. ذرات بارداری که بار آن‌ها هم‌نام باشد یکدیگر را می‌رانند و ذراتی که بارهای ناهم‌نام دارند یک دیگر را می‌ربایند. قانون کولمب مقدار عددی نیروی الکتروستاتیک بین دو ذرهٔ باردار را بدست می‌آورد و بیان می‌دارد که مقدار این نیرو با اندازهٔ بار ذرات رابطهٔ مستقیم و با مربع فاصلهٔ بین دو ذره رابطهٔ وارون دارد.

مقدار بار یک پادذره دقیقاً برابر با بار ذرهٔ متناظر با آن است ولی به صورت ناهم‌نام. کوارک‌ها هم باری برابر با 1⁄3- یا 2⁄3+ بار بنیادی دارند که البته هیچ کوارکی تاکنون به صورت آزاد یافت نشده است (دلیل نظری این مطلب در بحث آزادی مجانبی یافت می‌شود).

بار الکتریکی یک جسم برابر با مجموع بارهای الکتریکی ذرات سازندهٔ آن است. این بار به طور معمول کوچک است چون ماده از اتم ساخته شده و اتم‌ها به تعداد مساوی از پروتون و الکترون در هستهٔ خود دارند، در نتیجه از نظر الکتریکی خنثی اند. یک یون، اتمی (یا دسته‌ای از اتم‌ها) است که یک یا چند الکترون ازدست داده‌است یا به‌دست آورده‌است. اتمی که الکترون از دست دهد بار خالص آن مثبت می‌شود که آن را کاتیون می‌نامیم و اتمی که الکترون بدست آورد بار خالص آن منفی می‌شود و آن را آنیون می‌نامیم.

در هنگام تشکیل یک جسم (ماکروسکوپیک) اتم‌ها و یون‌های تشکیل دهندهٔ آن به گونه‌ای با هم ترکیب می‌شوند که جسم از نظر الکتریکی خنثی باشد و یا اینکه همیشه تمایل به ازدست دادن یا گرفتن الکترون و درنتیجه خنثی بودن دارند اما به‌ندرت جسمی پیدا می‌شود که به طور خالص بی‌بار (خنثی) باشد.

گاهی یون‌ها در سراسر مادهٔ تشکیل دهندهٔ جسم پخش شده‌است و به آن جسم بار مثبت یا منفی داده است. هم‌چنین اجسام رسانای جریان الکتریسیته گاهی سخت‌تر یا راحت‌تر (بسته به نوع ماده) الکترون بدست می‌آورند یا از دست می‌دهند و بار خالص مثبت یا منفی پیدا می‌کنند. به این پدیده که جسمی دارای بار غیر صفر ساکن باشد الکتریسیتهٔ ساکن می‌گوییم. به راحتی با بر روی هم مالیدن دو مادهٔ ناهمسان، مانند کهربا روی یک پارچه خزدار یا شیشه روی ابریشم می‌توانیم الکتریسیتهٔ ساکن تولید کنیم. با این روش اجسام نارسانا می‌توانند مقدار قابل توجهی بار الکتریکی بدست آورند یا ازدست دهند. واضح است که وقتی یکی از این اجسام بار الکتریکی بدست می‌آورد دیگری دقیقاً به همان اندازه بار الکتریکی از دست می‌دهد و این به دلیل قانون پایستگی بار الکتریکی است که همواره برقرار است.

گاهی مجموع بارهای الکتریکی یک جسم صفر است اما بار آن به صورت غیریکنواخت پخش شده است (مثلاً به دلیل حضور یک میدان الکترومغناطیسی یا دوقطبی‌های موجود در ماده) در این حالت می‌گوییم جسم قطبی شده‌است. بار الکتریکی بدست آمده از قطبی‌شدن ماده را بار مرزی، بار تولید شده بر روی یک جسم که ناشی از بار گرفته‌شده یا داده‌شده به جسمی دیگر است را بار آزاد و حرکت الکترون‌ها را در یک جهت خاص در فلزات رسانا، جریان الکتریکی می‌نامیم.




یکاها
در سامانهٔ بین‌المللی یکاها واحد بار الکتریکی کولمب معادل ۱۰۱۸×۶/۲۴۲ برابر بار یک پروتون می‌باشد. بنابراین بار یک الکترون e=1.602\times10^{-19} کولمب است. کولمب تعریف می‌شود به: مقدار باری که از مقطع عرضی یک رسانای الکتریکی با شدت جریان یک آمپر در یک ثانیه عبور می‌کند. برای نشان دادن بار یا الکتریسیته از علامت Q استفاده می‌کنند. مقدار بار الکتریکی به طور مستقیم توسط یک برق نما یا به طور غیر مستقیم توسط گالوانومتر اندازه گیری می‌شود.

بعد از فهم مکانیک کوانتوم و توضیح مفهوم کلاسیک بار الکتریکی با ادبیات کوانتومی، جورج استونی در سال ۱۸۹۱ واحد الکترون را برای بار الکتریکی پیشنهاد کرد، این پیشنهاد قبل از کشفیات جوزف جان تامسون در سال ۱۸۹۷ بود. امروزه واحد بار به شکل بار اولیه یا واحد بنیادین بار یا eنشان داده می‌شود. اندازه‌گیری بار باید به شکل ضریبی از بار بنیادی باشد حتی اگر مقدار بار برای یک جسم در ابعاد بزرگ باشد، همچنین مقدار بار یک عدد حقیقی است.




پیشینه
تالس، فیلسوف یونانی سده ششم پیش از میلاد گفته است که با مالیدن پارچه خزدار روی مواد مختلف مانند کهربا می‌توان بار یا الکتریسیته تولید کرد، همچنین یونانی‌ها گفته بودند که دکمه های باردار کهربایی می‌توانند اجسام سبک مانند مو را به سمت خود بربایند و یا اگر کهربا را برای مدت طولانی مالش دهند ممکن است جرقه تولید شود.در سال ۱۶۰۰ دانشمند انگلیسی، ویلیام گیلبرت بازگشتی به بحث الکتریسیته داشت و واژه لاتین الکتریکوس گرفته شده از واژه یونانی ηλεκτρον به معنی کهربا را ایجاد کرد که البته خیلی زود این واژه به شکل انگلیسی electric و electricity تغییر پیدا کرد. در سال ۱۶۶۰ اتوفون گوریک تلاش‌های گیلبرت را دنبال کرد و احتمالاً او کسی است که دستگاه تولیدکننده الکتریسیته ساکن را اختراع کرده است. از دیگر اروپاییان پیشرو در این زمینه می‌توان از رابرت بویل نام برد. بویل کسی است که در سال ۱۶۶۷ اظهار داشت که ربایش و رانش الکتریکی در فضای خالی نیز امکان‌پذیر است. استفان گری در سال ۱۷۲۹ مواد را به گروه‌های رسانا و نارسانا دسته‌بندی کرد. چارلز فرانسوا دو فی در سال ۱۷۳۳ گفت که: الکتریسیته از دو راه مختلف می‌آید که می‌توانند یکدیگر را خنثی کنند او این اظهارات را با عنوان تئوری "دو سیال" مطرح کرد که: وقتی شیشه روی ابریشم مالیده می‌شود شیشه باردار می‌شود یا بار شیشه‌ای و وقتی کهربا روی خز مالیده می‌شود کهربا باردار می‌شود یا بار صمغی. در سال ۱۸۳۹ مایکل فاراده نشان داد که تقسیم‌بندی ظاهری بین الکتریسیته ساکن، الکتریسیته جاری و بیوالکتریسیته درست نیست و همه این‌ها ناشی از رفتار الکتریکی قطب‌های مختلف دوقطبی‌ها است که به طور دلخواه یک را مثبت و دیگری را منفی نامیده‌ایم. بار مثبت، همان بار باقی‌مانده روی میله شیشه‌ای پس از مالش با ابریشم است.

بنجامین فرانکلین در قرن ۱۸ بیشترین تجربه را در این زمینه دارد. وی به حمایت از تئوری تک سیال الکتریکی بحث کرد. او تصور می‌کرد که بارالکتریکی یک سیال نامرئی است که در تمام مواد وجود دارد. مثلاً او معتقد بود که شیشه است که در ظرف لیدن بار الکتریکی را انباشته می‌کند. او اثبات کرد که مالیدن دو سطح نارسانا روی هم باعث می‌شود که این سیال تغییر مکان دهد و همین‌طور جاری شدن این سیال جریان الکتریکی را ایجاد می‌کند. وی این را نیز اثبات کرد که اگر ماده مقدار کمی از این سیال را داشته باشد می‌گوییم بار منفی دارد و اگر مقدار اضافی از آن را داشته باشد می‌گوییم بار مثبت دارد. به طور دلخواه (یا به دلیلی که ثبت نشده است) وی انتخاب کرد که باری که روی شیشه انباشته شده، بار شیشه‌ای بار مثبت است و بار صمغی منفی است. همچنین او بود که واژه‌های بار و باتری را وارد فرهنگ الکتریسیته کرد.
ویلیام واتسون نیز هم‌زمان با فرانکلین به همین نتایج رسید.




الکتریسیتهٔ ساکن و الکتریسیتهٔ جاری
الکتریسیتهٔ ساکن و جاری دو پدیدهٔ جداگانه و در اثر بار الکتریکی اند، که می‌توانند همزمان در یک جسم رخ دهند. الکتریسیتهٔ ساکن منبعی برای بار الکتریکی جسم است و اگر دو جسم که در تعادل الکتریکی نیستند را به هم بچسبانیم تخلیهٔ الکتریکی بین آن‌ها اتفاق می‌افتد. تخلیهٔ الکتریکی در بار الکتریکی هر دو جسم تغییر ایجاد می‌کند. در مقابل الکتریسیتهٔ جاری، جریان یافتن بارهای الکتریکی در یک جسم است که موجب ازدست‌دادن یا گرفتن هیچ‌گونه باری در آن جسم نمی‌شود. البته در تخلیه الکتریکی هم بارها از یکی به سمت دیگری جاری می‌شود اما این جریان خیلی کوتاه است که بخواهیم آن را جریان الکتریکی بخوانیم.



باردار کردن از راه تماس

یک آزمایش ساده

یک میلهٔ شیشه‌ای و صمغ را در نظر بگیرید، هیچ کدام از آن‌ها خواص الکتریکی از خود نشان نمی‌دهند؛ آن‌ها را باهم مالش دهید و همچنان در تماس با هم نگه دارید، همچنان هیچ اثر الکتریکی از خود نشان نمی‌دهند؛ حال آن‌ها را از هم جدا کنید حالا یکدیگر را جذب می‌کنند. اگر میلهٔ شیشه‌ای دیگری را با صمغ دیگری مالش دهید و آن دو را جدا از هم قرار دهید و دو میله شیشه‌ای را در کنار هم و دو تکه صمغ را هم کنار هم از نقطه‌ای آویزان کنید می‌بینید که:

دو میلهٔ شیشه‌ای یکدیگر را می‌رانند.
هر دو میلهٔ شیشه‌ای صمغ را می‌ربایند.
دو تکه صمغ یکدیگر را می‌رانند.

این پدیده‌های ربایش و رانش در هر دو مادهٔ دیگری که مانند شیشه و صمغ باردار شده باشد دقیقاً به همین شکل تکرار می‌شود. جسمی که شیشه را براند می‌گوییم به شکل شیشه‌ای باردار شده و اگر جسمی شیشه را جذب کند و صمغ را براند می‌گوییم به شکل صمغی باردار شده‌است.

امروزه در کاربرد علمی می‌گوییم جسمی که مانند شیشه باردار باشد بار مثبت و اگر مانند صمغ باردار باشد بار منفی دارد این علامت‌گذاری‌ها مانند قراردادهای ریاضی در علامت‌گذاری‌اند. هیچ نیرویی (ربایش یا رانش) بین یک جسم بدون بار و یک جسم باردار وجود ندارد.

در نگاه میکروسکوپی، راه‌های زیادی برای بوجود آمدن جریان الکتریکی وجود دارد مانند حرکت الکترون‌ها، حرکت حفره‌های الکترونی که مانند جابجایی بار مثبت می‌ماند و یا حرکت ذره‌های مثبت یا منفی یونی (یون‌ها یا هر ذره باردار دیگری در جهت خلاف یکدیگر در برق‌کافت یا پلاسما حرکت می‌کنند). حرکت هرکدام از این ذرات باردار در ماده ایجاد جریان الکتریکی می‌کند و معمولاً هم گفته نمی‌شود که ذره در حال جریان بار مثبت حمل می‌کند یا منفی.




خواص

علاوه بر تمام خواص الکترومغناطیسی که از بار الکتریکی گفته شد، بار یک متغیر نسبیتی است به این معنی که هر ذره‌ای که بار Q دارد، مهم نیست که با چه سرعتی حرکت می‌کند، فرض می شود همواره بار Q را حفظ می‌کند. این خاصیت بار بوسیله آزمایش هم نشان داده شده‌است مثلاً: بار یک هسته هلیوم (دو پروتون و دو نوترون در مجاورت یکدیگر در هسته اتم با سرعت بسیار زیاد در حال گردش‌اند) برابر است با بار دو هسته دوتریوم (یک پروتون و یک نوترون در مجاورت یکدیگرند که با سرعتی بسیار کمتر از آنچه در هسته هلیوم داشتند حرکت می‌کنند).




پایستگی بار الکتریکی

تمام بار الکتریکی یک سامانه بی‌دررو جدا از اینکه چه اتفاقی در آن بیفتد همواره ثابت باقی می‌ماند. این قانون برای تمام فرایندهای شناخته‌شده در فیزیک تعمیم داده می‌شود هم چنین برای نامتغیرهای گوج[۹] در تابع موج برای حالت محلی آن. پایستگی بار، معادله پیوستگی جریان الکتریکی را نتیجه می‌دهد. به شکل عمومی‌تر، بار کل برابر است با انتگرال حجمی V چگالی بار ρ که خود معادل است با انتگرال سطحی چگالی جریان J در سطح بسته S = ∂V



کاربرد نیروهای الکتریکی بین اجسام باردار

نیروهای الکتریکی موجود بین اجسام باردار در صنعت کاربردهای زیادی دارند، که از آن جمله می‌توان به رنگ افشانی الکتروستاتیکی، گردنشانی، دود گیری، مرکب پاشی چاپگرها و فتوکپی اشاره کرد. به عنوان مثال در یک دستگاه فتوکپی دانه‌های حامل ماشین با ذرات گرد سیاه رنگی که تونر نام دارد، پوشیده می‌شوند. این ذرات بوسیله نیروهای الکتروستاتیکی به دانه حامل می‌چسبند.

ذرات با بار منفی تونر، سرانجام از دانه‌های حاملشان جدا می‌شوند. جذب این ذرات توسط تصویر با بار مثبت متن مورد نسخه برداری، که بر روی یک غلتک چرخان قرار دارد، صورت می‌گیرد. آنگاه ورقه کاغذ باردار ذرات تونر را روی غلتک جذب می‌کند و بعد از پخته شدن و نشستن ذرات بر روی کاغذ، کپی مورد نظر به‌دست می‌آید.
... page1 - page2 - page3 - page4 - page5 - page6 - page7 ...